¸®ºä
 





 
 
 




Àü¼Û 2017-09-26 18:02
[̑ˍ]

³ú½Å°æ ¸ð¹æÇÑ ÀÚü ÇнÀ Ĩ
ÀÎÅÚ ·ÎÀÌÈ÷(Loihi) ´º·Î¸ðÇÈ Ä¨ ¹ßÇ¥

 

ÀÎÅÚ(Intel)ÀÌ ÀΰøÁö´É(AI) °¡¼ÓÈ­¸¦ À§ÇÑ ÃÖÃÊÀÇ ÀÚü ÇнÀÇü(Self-Learning) ĨÀ» ¹ßÇ¥Çß´Ù.

ÀÎÅÚÀº 25ÀÏ(ÇöÁö½Ã°£) 8¼¼´ë µ¥½ºÅ©Å¾ ÄÚ¾î ÇÁ·Î¼¼¼­ ¹× 14/17/18ÄÚ¾î HEDT(High-end Desktop) ÄÚ¾î X ÇÁ·Î¼¼¼­ Ãâ½Ã ¹ßÇ¥¿Í ÇÔ²² ¾÷°è ÃÖÃÊÀÇ ÀÚü ÇнÀ ĨÀÎ ÄÚµå³×ÀÓ Loihi(·ÎÀÌÈ÷) Å×½ºÆ® ĨÀ» ¹ßÇ¥Çß´Ù.

ÀÎÅÚÀº º¹ÀâÇÑ °áÁ¤ÀÌ ´õ »¡¸® ÀÌ·ïÁö°í ±¸Á¶È­µÇÁö ¾ÊÀº ÀÚ¿¬½º·¯¿î µ¥ÀÌÅÍÀÇ ¼öÁý, ºÐ¼® ¹× ÀÇ»ç °áÁ¤¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϸ鼭 °íÀüÀûÀÎ CPU ¹× GPU ¾ÆÅ°ÅØÃ³¸¦ ¶Ù¾î³ÑÀ» ¼ö ÀÖ´Â ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù¸ç, PC¿Í ¼­¹ö¸¦ ³Ñ¾î ÄÄÇ»ÆÃÀ» ÁÖµµÇϱâ À§ÇØ Áö³­ 6³â µ¿¾È °íÀüÀûÀÎ ÄÄÇ»ÆÃ Ç÷§ÆûÀ» °¡¼ÓÈ­ ÇÒ ¼ö Àִ Ư¼ö ¾ÆÅ°ÅØÃ³¸¦ ¿¬±¸Çؿ԰í ÃÖ±Ù ÀΰøÁö´É ¹× ½Å°æ°úÇп¡ ´ëÇÑ ÅõÀÚ¿Í ¿¬±¸ °³¹ßÀ» ¾Õ´ç°å´Ù°í ¼³¸íÇß´Ù.

 

±â°èÇнÀ ´ë½Å Àΰ£ÀÇ ³ú¸¦ ¸ð¹æÇÑ ÀÚü ÇнÀ Ĩ °³¹ß

±âÁ¸ÀÇ ±â°è ÇнÀ(Machine Learning) ±â¹Ý ½ÉÃþ ÇнÀ(Deep Learning)Àº µ¥ÀÌÅ͸¦ »ç¿ëÇØ Ãß·ÐÀ» °ÅµìÇϸ鼭 ½Ã°£ÀÌ Áö³¯¼ö·Ï ¶È¶ÈÇØÁö´Â ¹æ½ÄÀ̾úÁö¸¸, ´ë·®ÀÇ ±³À°¿ë µ¥ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÏ°í Æ¯Á¤ ¿ä¼Ò¿Í »óȲÀ» ±¸Ã¼ÀûÀ¸·Î °í·ÁÇÏÁö ¾ÊÀº °æ¿ì ÀϹÝÈ­Çϰųª °³ÀÎÈ­µÈ ¼­ºñ½º¸¦ Á¦°øÇϱ⠾î·Á¿î ºÐ¾ßµµ ÀÖ¾ú´Ù.

¿¹¸¦ µé¾î ½É¹Ú¼ö¸¦ ÃøÁ¤ÇÒ °æ¿ì °³°³ÀÎÀÇ ½É¹Ú¼ö¿Í ¿îµ¿·®, »óȲÀÌ ´Ù¸£±â ¶§¹®¿¡ ´Ü¼øÇÑ ±â°è ÇнÀ ¸¸À¸·Î´Â Á¤»óÀûÀÎ ÆÐÅϰú ÀÏÄ¡ÇÏÁö ¾Ê´Â °ÍÀ» ã±â ¾î·Æ´Ù.

±×·¯³ª ³ú½Å°æÀ» ¸ð¹æÇÑ ÀÚü ÇнÀ ĨÀº Á¶±ë ÈÄ, ½Ä»ç ÈÄ, Ãëħ Àü°ú °°Àº ´Ù¾çÇÑ Á¶°Ç¿¡¼­ »ç¶÷ÀÇ ½ÉÀå ¹Úµ¿À» ÆÇµ¶ÇØ Á¤»óÀûÀÎ ½ÉÀå ¹Úµ¿À» ÆÇ´ÜÇϰí, Á¤»óÀûÀÎ ÆÐÅϰú ÀÏÄ¡ÇÏÁö ¾Ê´Â ½É¹Ú ÃøÁ¤ µ¥ÀÌÅ͸¦ ¸ð´ÏÅ͸µ Çϰųª »ç¿ëÀÚ¿¡ ¸ÂÃç °³ÀÎÈ­ ÇÒ ¼ö ÀÖ´Ù.

ÀÎÅÚÀº ÀÌ °°Àº À¯ÇüÀÇ ³í¸®°¡ »çÀ̹ö º¸¾È¿¡µµ Àû¿ëµÉ ¼ö ÀÖÀ¸¸ç, ÀÚü ÇнÀ ĨÀÌ Å¾ÀçµÈ ½Ã½ºÅÛÀÌ ´Ù¾çÇÑ »óȲ¿¡¼­ Á¤»óÀûÀÎ °á°ú¸¦ ÇнÀÇ߱⠶§¹®¿¡ µ¥ÀÌÅÍ ½ºÆ®¸²ÀÇ ºñÁ¤»ó ¶Ç´Â Â÷ÀÌ·Î ÀÎÇØ ¹ß»ýÇÏ´Â À§¹Ý ÇàÀ§³ª ÇØÅ·À» ½Äº°ÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀ̶ó°í ¼³¸íÇß´Ù.

 

ÀÎÅÚ ÃÖÃÊ ´º·Î¸ðÇÈ Ä¨ Loihi Ư¡Àº?

ÀÎÅÚ ¿¬±¸¼Ò´Â ¹ÝµµÃ¼ ¼³°èÀÇ ±âÃÊ ÀÛ¾÷À¸·Î À¯¸íÇÑ CalTechÀÇ Carver Mead ±³¼ö¿Í ÇÔ²² ³úÀÇ ±â´ÉÀ» ¸ð¹æÇÑ ÃÖÃÊÀÇ ÀÚü ÇнÀ ±â´ÉÀ» °®Ãá ´º·Î¸ðÇÈ Ä¨(neuromorphic chip) ÄÚµå³×ÀÓ Loihi¸¦ °³¹ßÇß´Ù.

´º·Î¸ðÇÈ Ä¨ ¸ðµ¨Àº ŸÀֿ̹¡ µû¶ó º¯Á¶µÉ ¼ö ÀÖ´Â ½ºÆÄÀÌÅ©¿Í ÇÃ¶ó½ºÆ½ ½Ã³À½º¸¦ »ç¿ëÇØ ´º·±ÀÌ Åë½ÅÇϰí ÇнÀÇÏ´Â ¹æ¹ý¿¡¼­ ¿µ°¨À» ¾ò¾úÀ¸¸ç, ÀÌ´Â ÄÄÇ»ÅͰ¡ ÆÐÅϰú ¿¬°áÀ» ±â¹ÝÀ¸·Î ÀÚ°¡ ±¸¼ºÇϰí ÀÇ»ç °áÁ¤À» ³»¸®´Âµ¥ µµ¿òÀ» ÁØ´Ù.

ÀÎÅÚ 14nm °øÁ¤ ±â¼ú·Î Á¦ÀÛµÈ Loihi Å×½ºÆ® ĨÀº ³úÀÇ ±âº» ¸ÅÄ¿´ÏÁòÀ» ¸ð¹æÇÑ µðÁöÅРȸ·Î°¡ Æ÷ÇԵǾî ÀÖ¾î ±â°è ÇнÀº¸´Ù ºü¸£°í È¿À²ÀûÀ¸·Î ¼öÇàÇϸ鼭 ´õ ³·Àº ÄÄÇ»ÆÃ ¼º´ÉÀ» ÇÊ¿ä·Î ÇÑ´Ù. ÃÑ 13¸¸°³ÀÇ ´º·±°ú 1¾ï 3,300¸¸°³ÀÇ ½Ã³À½ºÀÇ Ã³¸® ´É·ÂÀ» Á¦°øÇϸç, ¿ÏÀüÇÑ ºñµ¿±âÀû ´º·Î¸ðÇÈ ¸Å´Ï ÄÚ¾î ¸Þ½¬¿¡ ±¸ÃàµÇ¾î °¢ ´º·±Àº ¼öõ °³ÀÇ ´Ù¸¥ ´º·±°ú Åë½ÅÇÒ ¼ö ÀÖ´Ù.

°³º° ´º·Î¸ðÇÈ ÄÚ¾î´Â µ¿ÀÛ Áß¿¡ ³×Æ®¿öÅ© ¸Å°³ º¯¼ö¸¦ Á¶Á¤Çϰí Áöµµ ÇнÀ, ÀÚÀ² ÇнÀ, °­È­ ÇнÀ ¹× ±âŸ ÇнÀ ÆÐ·¯´ÙÀÓÀ» Áö¿øÇϱâ À§ÇÑ ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ ÇнÀ ¿£ÁøÀÌ Æ÷ÇԵǾî ÀÖ´Ù.

¶ÇÇÑ °æ·Î °èȹ(path planning), Á¦¾à ¸¸Á·(constraint satisfaction), ½ºÆÄ½º ÄÚµù(sparse coding), »çÀü ÇнÀ(dictionary learning), µ¿Àû ÆÐÅÏ ÇнÀ ¹× Àû¿ë(dynamic pattern learning and adaptation) µîÀ» Æ÷ÇÔÇÑ ¹®Á¦¿¡ ´ëÇØ È¿À²ÀÌ ³ôÀº ¿©·¯ ¾Ë°í¸®ÁòÀÇ °³¹ß ¹× Å×½ºÆ®¸¦ ÇÒ ¼ö ÀÖ´Ù.

 

ÀÏ¹Ý ½Å°æ¸Á ±â¼úº¸´Ù ºü¸£°í ¿¡³ÊÁö È¿À²¼º ³ôÀ» °Í

Loihi Å×½ºÆ® ĨÀº ¸Å¿ì À¯¿¬ÇÑ ¿ÂĨ ÇнÀ ´É·ÂÀ» Á¦°øÇÏ¸ç ±³À° ¹× Ãß·Ð ±â´ÉÀ» ´ÜÀÏ Ä¨¿¡ °áÇÕÇß´Ù. µû¶ó¼­ Ŭ¶ó¿ìµåÀÇ ´ÙÀ½ ¾÷µ¥ÀÌÆ®¸¦ ±â´Ù¸®Áö ¾Ê°í ½Ç½Ã°£À¸·Î ±â°è¸¦ ÀÚÀ²ÀûÀ¸·Î Àû¿ëÇÒ ¼ö ÀÖ´Ù.

¿¬±¸ÀÚµéÀº ±â°è ÇнÀ¿¡ »ç¿ëµÇ´Â '¼Õ±Û¾¾ ¼ýÀÚ(MNIST digit) ÀνÄ' ¹®Á¦¸¦ ÇØ°áÇÒ ¶§ ÁÖ¾îÁø Á¤È®µµ¸¦ ´Þ¼ºÇϱâ À§ÇÑ ÃÑ ¿¬»êÀ» ÃøÁ¤ÇÑ °á°ú ´Ù¸¥ ÀϹÝÀûÀÎ ½ºÆÄÀÌÅ© ½Å°æ¸Á¿¡ ºñÇØ 100¸¸¹è Çâ»óµÈ ¼Óµµ·Î ÇнÀ ´É·ÂÀ» Áõ¸íÇßÀ¸¸ç, ³ª¼±Çü ½Å°æ¸Á ³×Æ®¿öÅ©(convolutional neural networks)³ª µö·¯´× ½Å°æ ³×Æ®¿öÅ©(deep learning neural networks) °°Àº ±â¼ú¿¡ ºñÇØ µ¿ÀÏÇÑ ÀÛ¾÷¿¡¼­ ÈξÀ ÀûÀº ¸®¼Ò½º¸¦ »ç¿ëÇÑ´Ù°í ¾ð±ÞÇß´Ù.

ÀÎÅÚÀº Loihi Å×½ºÆ® ĨÀÇ ÇÁÅä·ÎŸÀÔ ÀÚü ÇнÀ ±â´ÉÀÌ °³ÀÎ¿ë ·Îº¿ »Ó¸¸ ¾Æ´Ï¶ó ÀÚµ¿Â÷ ¹× »ê¾÷¿ë ¾ÖÇø®ÄÉÀ̼Çó·³ ºñ ±¸Á¶ÀûÀΠȯ°æ¿¡¼­ ÀÚÀ²ÀûÀÎ ÀÛµ¿°ú Áö¼ÓÀûÀÎ ÇнÀÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ´Â ºÐ¾ß¸¦ ¹ßÀü½Ãų ¼ö ÀÖ´Â ¾öû³­ ÀáÀç·ÂÀ» °¡Áö°í ÀÖ´Ù°í ¹àÇû´Ù. ¿¹¸¦ µé¾î ÀÚÀ²ÁÖÇàÂ÷¿¡¼­ ´Ü¼øÈ÷ ÀÚµ¿Â÷³ª ÀÚÀü°Å À̹ÌÁö¸¦ ±¸ºÐÇÏ´Â °Í »Ó¸¸ ¾Æ´Ï¶ó À̵éÀÇ ¿òÁ÷ÀÓ±îÁö ÀνÄÇÒ ¼ö ÀÖ´Ù.

¶ÇÇÑ ÀϹÝÀûÀÎ ±³À° ½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ ¹ü¿ë ÄÄÇ»ÆÃº¸´Ù ÃÖ´ë 1,000¹è ´õ ¿¡³ÊÁö È¿À²ÀûÀÌ´Ù.

ÀÎÅÚÀº Loihi Å×½ºÆ® Ĩ¿¡ ´ëÇØ 2018³â »ó¹Ý±âºÎÅÍ ÀΰøÁö´É ¹ßÀü¿¡ ÃÊÁ¡À» µÐ ÁÖ¿ä ´ëÇÐ ¹× ¿¬±¸ ±â°ü¿¡ Á¦°øÇÒ °ÍÀ̶ó°í ¹àÇû´Ù.

 

  Å±×(Tag)  : ÀÎÅÚ, AI, CPU, ¸Ó½Å·¯´×
°ü·Ã ±â»ç º¸±â
[¿µ»ó] ¸Þ¸ð¸® °¡°Ý Æøµî ºÎÃß±â´Â °øÆ÷ ¸¶ÄÉÆÃ°ú ´ëÇü PC Á¦Á¶»çµé, [¸Þ¸ð¸® °¡°Ý Æøµî 3ºÎ]
[¿µ»ó] PC °ÔÀ̹ÖÀÇ ¹Ì·¡´Â ´õ ºü¸¥ GPU°¡ ¾Æ´Ï¶ó DLSS°¡ µÉ °Í, [¿£ºñµð¾Æ Á¨½¼ Ȳ CES Q&A ºÐ¼®]
[¿µ»ó] PC´Â »ç¶óÁö°í °¡ÀüÀº AI ·Îº¿À¸·Î, °¨ÀÚ³ª¹«°¡ ÇØ¼³Çص帮´Â CES 2026
[¿µ»ó] ¸Þ¸ð¸®¿Í TSMC¿¡ ´Þ¸° 2026³â, PC ½ÃÀå ½ÅÁ¦Ç° Ãâ½Ã [2026³â PC½ÃÀå Àü¸Á]
[¿µ»ó] ½ÅÁ¦Ç°µµ °ø±Þµµ ¼ö¿äµµ ¾ø´ø 2025³â, Çѱ¹ PC ½ÃÀå µ¹¾Æº¸±â [2025³â PC½ÃÀå °á»ê]
[¿µ»ó] AI ¼ö¿ä°¡ ´Ã¸é ¿Ö DDR5 °ªÀÌ ¿À¸¦±î?, [¸Þ¸ð¸® °¡°Ý Æøµî 1ºÎ]
ű×(Tags) : ÀÎÅÚ, AI, CPU, ¸Ó½Å·¯´×     °ü·Ã±â»ç ´õº¸±â

  À̼ö¿ø ¼ö¼®±âÀÚ / ÇÊ¸í ÆøÇ³Àü¾ß / ÆøÇ³Àü¾ß´Ô¿¡°Ô ¹®ÀÇÇϱâ swlee@bodnara.co.kr
³²µé ÁÁ´Ù´Â °ÍÀº ´Ù µû¶ó ÇÏÁö¸¸ Á¤ÀÛ ±í°Ô ÆÄ°íµéÁö´Â ¸øÇÏ´Â ¼º°ÝÀÌ´Ù. Á¤¸» ÁÁ¾ÆÇÏ´Â ÀÏÀº Ãë¹Ì·Î ÇÏ·¨´Âµ¥, ¾î¼´Ù Á÷¾÷ÀÌ µÇ´Â ¹Ù¶÷¿¡ Àϰú Áö¸§ÀÌ ÀϽɵ¿Ã¼ÀÎ »îÀ» »ì°í ÀÖ´Ù.
±âÀÚ°¡ ¾´ ´Ù¸¥ ±â»ç º¸±â

Creative Commons License º¸µå³ª¶óÀÇ ±â»ç´Â ÀúÀÛÀÚÇ¥½Ã-ºñ¿µ¸®-º¯°æ±ÝÁö 2.0 ´ëÇѹα¹ ¶óÀ̼±½º¿¡ µû¶ó ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. Copyright ¨Ï ³Ø½ºÁ¨¸®¼­Ä¡(ÁÖ) º¸µå³ª¶ó ¹Ìµð¾î±¹
½ÎÀÌ¿ùµå °ø°¨ ±â»ç¸µÅ© ÆÛ°¡±â ±â»ç³»¿ë ÆÛ°¡±â ÀÌ ±â»ç¸¦ ÇϳªÀÇ ÆäÀÌÁö·Î ¹­¾î º¼ ¼ö ÀÖ½À´Ï´Ù. Ãâ·Âµµ °¡´ÉÇÕ´Ï´Ù.
ȨÀ¸·Î žÀ¸·Î
º¸µå³ª¶ó ¸¹À̺» ±â»ç
¿£ºñµð¾Æ MFG 6x ¸ðµå¿Í µ¿ÀÛ MFG 4¿ù Ãâ½Ã ¿¹Á¤
ÀÎÅÚ ¸Þ¸ð¸® ½ÃÀå º¹±Í? ¼ÒÇÁÆ®¹ðÅ©¿Í Â÷¼¼´ë AI ¸Þ¸ð¸® °³¹ß Çù·Â
SPM, ÀüÀÚ·£µå Çù¾÷ ÅÙ۸®½º Űº¸µå ¡®PL87W ARA ¼¼¸ðŰ' ¿¹¾à±¸¸Å ÁøÇà.
¿£ºñµð¾Æ ÁöÆ÷½º RTX 50 SUPER ½Ã¸®Áî¿¡ À̾î RTX 60 ½Ã¸®Áîµµ Ãâ½Ã ¿¬±â?
¼º´É°ú Æ©´× ÀâÀº ½Ç¼ÓÀִ Ÿ¿öÇü Äð·¯,ALSEYE Q120S Plus
PC´Â »ç¶óÁö°í °¡ÀüÀº AI ·Îº¿À¸·Î, °¨ÀÚ³ª¹«°¡ ÇØ¼³Çص帮´Â CES 2026
¿£Æ®¸®ºÎÅÍ ÇÏÀÌ¿£µå±îÁö PCIe 5.0 ½Ã´ë, 2026³â Ű¿À½Ã¾Æ ½ÅÇü SSD ·±Äª
ÀͽºÅÙ´õµµ ¿ÍÀÌÆÄÀÌ 7 ½Ã´ë, ipTIME Extender-BE3600Q
   ÀÌ ±â»çÀÇ ÀÇ°ß º¸±â
Æ®À§ÅÍ º£Å¸¼­ºñ½º °³½Ã! ÃֽŠPC/IT ¼Ò½ÄÀ» Æ®À§Å͸¦ ÅëÇØ È®ÀÎÇϼ¼¿ä @bodnara

±âÀÚÀÇ ½Ã°¢ÀÌ Ç×»ó ¿ÇÀº°ÍÀº ¾Æ´Õ´Ï´Ù. ³ª¸ÓÁö´Â ¿©·¯ºÐµéÀÌ Ã¤¿ö Áֽʽÿä.

2014³âºÎÅÍ ¾î·Á¿î À̾߱⸦ ½±°Ô ÇÏ´Â °ÍÀ¸·Î ÆíÁý¹æÄ§À» ¹Ù²ß´Ï´Ù.

³×¿À¸¶Àεå / 17-09-27 12:16/ ÀÚ±¹/ ½Å°í/ ÀÌ´ñ±Û¿¡´ñ±Û´Þ±â
ÁÁÀº Á¤º¸ °¨»çµå¸³´Ï´Ù.
ÀÎÅõ¸Æ½ºKR / 17-10-01 18:35/ ÀÚ±¹/ ½Å°í/ ÀÌ´ñ±Û¿¡´ñ±Û´Þ±â
¸Å¿ì°ü½É °¡¿ä !!

¾ðÁ¦Âë ³ª¿ÀÁÒ .! ±â´ë°¡ µÇ¿ä !

¿å½É ³ª¼­¿ä !
ÀÎÅõ¸Æ½ºKR / 17-10-02 15:34/ ÀÚ±¹/ ½Å°í/ ÀÌ´ñ±Û¿¡´ñ±Û´Þ±â
À½ ! °ü½É °¡´Âµ¥. !

µû·Î ¸»°í ÅëÇÕ ÀÏüÇü !! °í¹Ðµµ ȸ·Î »ç¿ëÇØ¼­ Å©°Ô ´ëÆø ÁÙÀϼö ÀÖÀ¸¸é »ý»ê ´Ü°¡ Àý¾àµµ±â °¡°Ýµµ ³·Ãß´Â ¹æ¹ý ¾ø³ª¿ä.

ÄÚ¾î Å©±â¸¦ ÁÙÀ̰í È¿À²¼ºÀ» ³ôÀ̰í. ÇÏ¸é ¿©·¯°Ô ³¢¿ö ³Ö¾îµµ »ó°ü ¾ø´Âµ¥. !!

°í¹Ðµµ °øÁ¤ µé¾î °¡¸é ¿ø°¡ Àý°¨È¿°ú ÀÖ´ÙÁÒ . ±¸Á¶¸¦ ´Ü¼øÈ­ ½ÃÄÑ ÀÏüÇüÀ¸·Î ¸¸µé¸é. ¼öÁ÷À¸·Î ½Î¾Æ ¿Ã¸®´Â ±â¼ú »ç¿ëÇÏ¸é ¼º´ÉÀÌ ´õ ÁÁ´Ù ÇÏ´øµ¥.

¹ÝµµÃ¼ ĨÀ» ¿©·¯ °³¸¦ º¹ÃþÀ¸·Î ¿Ã·Á¼­ ¸¸µé¼ö ÀÖ´Ù¸é Á¤¸» ÁÁÀº Á¦Ç°À̶ó°í ¸»ÇÏ°í ½ÍÀºµ¥ . µû·Î µû·Î µé¾î°¡´Â ÇüÅ´ ¹®Á¦°¡ ÀÖÁÒ !!
ÀÎÅõ¸Æ½º / 17-10-02 15:37/ ÀÚ±¹/ ½Å°í/ ÀÌ´ñ±Û¿¡´ñ±Û´Þ±â
°³ÀÎÀûÀ¸·Î Á¤¸» ¸¾¿¡ µå³×¿ä. !!

±×·±µÇ . ¼öÆòÀ¸·Î ¸»°í ¼öÁ÷À¸·Î ½Î¾Æ ¿Ã¸®´Â ¹ÝµµÃ¼ ±â¼úÀ» Ȱ¿ëÇßÀ¸¸é ÁÁ°Ú¾î¿ä !!

¼öÆòÀ¸·Î ÆîÄ¡¸é ¸éÀûÀÌ ³Ê¹« ³Ð¾îÀú¼­. ¼öÁ÷À¸·Î ½Î¾Æ ¿Ã¸®´ø°¡ º¹Ãþ±¸Á¶¸¦ »ç¿ëÇÏ´Â ¹ÝµµÃ¼ ĨÀÌ ³ª¿ÔÀ¸¸é ÁÁ°Ú¾î¿ä..

´Ð³×ÀÓ À¥º¿¹æÁö

ȨÀ¸·Î žÀ¸·Î
 
 
2026³â 02¿ù
ÁÖ°£ È÷Æ® ·©Å·

[°á°ú¹ßÇ¥] 2025³â 1ºÐ±â Æ÷ÀÎÆ® ¼ÒÁø ·Î¶Ç 17
[°á°ú¹ßÇ¥] 2025³â 4ºÐ±â Æ÷ÀÎÆ® ¼ÒÁø ·Î¶Ç 17
[°á°ú¹ßÇ¥] 2025³â 3ºÐ±â Æ÷ÀÎÆ® ¼ÒÁø ·Î¶Ç 16
[°á°ú¹ßÇ¥] 2025³â 2ºÐ±â Æ÷ÀÎÆ® ¼ÒÁø ·Î 18
[°á°ú¹ßÇ¥] 2024³â 4ºÐ±â Æ÷ÀÎÆ® ¼ÒÁø ·Î¶Ç 19

½Ç½Ã°£ ´ñ±Û
¼Ò¼È ³×Æ®¿öÅ©